Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3205, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38615015

RESUMO

Defence against pathogens relies on intracellular nucleotide-binding, leucine-rich repeat immune receptors (NLRs) in plants. Hormone signaling including abscisic acid (ABA) pathways are activated by NLRs and play pivotal roles in defence against different pathogens. However, little is known about how hormone signaling pathways are activated by plant immune receptors. Here, we report that a plant NLR Sw-5b mimics the behavior of the ABA receptor and directly employs the ABA central regulator PP2C-SnRK2 complex to activate an ABA-dependent defence against viral pathogens. PP2C4 interacts with and constitutively inhibits SnRK2.3/2.4. Behaving in a similar manner as the ABA receptor, pathogen effector ligand recognition triggers the conformational change of Sw-5b NLR that enables binding to PP2C4 via the NB domain. This receptor-PP2C4 binding interferes with the interaction between PP2C4 and SnRK2.3/2.4, thereby releasing SnRK2.3/2.4 from PP2C4 inhibition to activate an ABA-specific antiviral immunity. These findings provide important insights into the activation of hormone signaling pathways by plant immune receptors.


Assuntos
Ácido Abscísico , Transdução de Sinais , Inibição Psicológica , Domínios Proteicos , Hormônios
2.
J Agric Food Chem ; 72(14): 8225-8236, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38557068

RESUMO

As a continuous flow investigation of novel pesticides from natural quinolizidine alkaloids, the chemical compositions of the seeds of Sophora alopecuroides were thoroughly researched. Fifteen new aloperine-type alkaloids (1-15) as well as six known aloperine-type alkaloids (16-21) were obtained from the extract of S. alopecuroides. The structures of 1-21 were confirmed via HRESIMS, NMR, UV, IR, ECD calculations, and X-ray diffraction. The antiviral activities of 1-21 against tobacco mosaic virus (TMV) were detected following the improved method of half-leaf. Compared with ningnanmycin (protective: 69.7% and curative: 64.3%), 15 exhibited excellent protective (71.7%) and curative (64.6%) activities against TMV. Further biological studies illustrated that 15 significantly inhibited the transcription of the TMV-CP gene and increased the activities of polyphenol oxidase (PPO), peroxidase (POD), superoxide dismutase (SOD), and phenylalanine ammonia-lyase (PAL). The antifungal activities of 1-21 against Phytophythora capsica, Botrytis cinerea, Alternaria alternata, and Gibberella zeae were screened according to a mycelial inhibition test. Compound 13 displayed excellent antifungal activity against B. cinerea (EC50: 7.38 µg/mL). Moreover, in vitro antifungal mechanism studies displayed that 13 causes accumulation of reactive oxygen species and finally leads to mycelia cell membrane damage and cell death in vitro.


Assuntos
Alcaloides , Quinolizidinas , Sophora , Vírus do Mosaico do Tabaco , Antifúngicos , Sophora/química , Alcaloides/química , Antivirais/farmacologia , Antivirais/química , Sementes/química
3.
J Agric Food Chem ; 72(9): 5047-5061, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38394631

RESUMO

As part of our ongoing investigation of natural bioactive substances from the genus Thermopsis of the tribe Fabaceae for agricultural protection, the chemical constituents of the herb Thermopsis lupinoides were systematically investigated, which led to the isolation of 39 quinolizidine alkaloids (QAs) (1-39), including 14 new QAs (1-14) and 14 isoflavones (40-53). Their structures were elucidated through comprehensive spectroscopic data analysis (IR, UV, NMR, HRESIMS), ECD calculations, and X-ray crystallography. The antitomato spotted wilt virus (TSWV) and antifungal (against Botrytis cinerea, Gibberella zeae, Phytophythora capsica, and Alternaria alternata) and insecticidal (against Aphis fabae and Tetranychus urticae) activities of the isolated compounds were screened using the lesion counting method, mycelial inhibition assay, and spray method, respectively. The bioassay results showed that 34 exhibited excellent protective activity against TSWV, with an EC50 value of 36.04 µg/mL, which was better than that of the positive control, ningnanmycin (86.03 µg/mL). The preliminary mechanistic exploration illustrated that 34 induced systemic acquired resistance in the host plant by acting on the salicylic acid signaling pathway. Moreover, 1 showed significant antifungal activity against B. cinerea (EC50 value of 20.83 µg/mL), while 2 exhibited good insecticidal activity against A. fabae (LC50 value of 24.97 µg/mL). This research is promising for the invention of novel pesticides from QAs with high efficiency and satisfactory ecological compatibility.


Assuntos
Fabaceae , Fungicidas Industriais , Inseticidas , Antifúngicos/farmacologia , Antifúngicos/química , Fungicidas Industriais/farmacologia , Fungicidas Industriais/química , Alcaloides Quinolidizínicos , Inseticidas/farmacologia , Inseticidas/química , Antivirais/farmacologia , Relação Estrutura-Atividade
5.
Arch Virol ; 169(2): 39, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300368

RESUMO

The complete genome sequence of a putative novel potyvirus, tentatively named "polygonatum kingianum mottle virus" (PKgMV; GenBank accession no. ON428226), infecting Polygonatum kingianum in China, was obtained by next-generation sequencing (NGS), reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE). PKgMV exhibits the typical genome organization and characteristics of members of the genus Potyvirus, with a length of 10,002 nucleotides (nt) and a large open reading frame (nt 108 to 9,746) encoding a polyprotein of 3,212 amino acids (aa) (363.68 kDa). Pairwise comparisons revealed that the PKgMV polyprotein shares 50.5-68.6% nt and 43.1-72.2% aa sequence identity with reported members of the genus Potyvirus. Moreover, phylogenetic analysis indicated that PKgMV is closely related to polygonatum kingianum virus 1 (PKgV1; accession no. MK427056). These results suggest that the PKgMV is a novel member of the genus Potyvirus of the family Potyviridae.


Assuntos
Polygonatum , Potyvirus , China , Filogenia , Aminoácidos , Nucleotídeos , Poliproteínas , Potyvirus/genética
7.
Int J Mol Sci ; 24(21)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37958590

RESUMO

In order to reduce the use of fungicide and ensure food safety, it is necessary to develop fungicide with low toxicity and high efficiency to reduce residues. Azoxystrobin (AZOX), which is derived from mushrooms, is an excellent choice. However, conventional AZOX release is difficult to regulate. In this paper, a pH-responsive fungicide delivery system for the preparation of AZOX by impregnation method was reported. The Zinc metal-organic framework/Biomass charcoal (ZIF-8/BC) support was first prepared, and subsequently, the AZOX-ZIF-8/BC nano fungicide was prepared by adsorption of AZOX onto ZIF-8/BC by dipping. Gray mold, caused by Botrytis cinerea, is one of the most important crop diseases worldwide. AZOX-ZIF-8/BC could respond to oxalic acid produced by Botrytis cinerea to release loaded AZOX. When pH = 4.8, it was 48.42% faster than when pH = 8.2. The loading of AZOX on ZIF-8/BC was 19.83%. In vitro and pot experiments showed that AZOX-ZIF-8/BC had significant fungicidal activity, and 300 mg/L concentration of AZOX-ZIF-8-BC could be considered as a safe and effective control of Botrytis cinerea. The above results indicated that the prepared AZOX-ZIF-8/BC not only exhibited good drug efficacy but also demonstrated pH-responsive fungicide release.


Assuntos
Fungicidas Industriais , Estruturas Metalorgânicas , Solanum lycopersicum , Fungicidas Industriais/farmacologia , Carvão Vegetal/farmacologia , Estruturas Metalorgânicas/farmacologia , Zinco/farmacologia , Biomassa , Doenças das Plantas/prevenção & controle , Botrytis
8.
Int J Mol Sci ; 24(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37895127

RESUMO

Plant viruses are the main pathogens which cause significant quality and yield losses in tomato crops. The important viruses that infect tomatoes worldwide belong to five genera: Begomovirus, Orthotospovirus, Tobamovirus, Potyvirus, and Crinivirus. Tomato resistance genes against viruses, including Ty gene resistance against begomoviruses, Sw gene resistance against orthotospoviruses, Tm gene resistance against tobamoviruses, and Pot 1 gene resistance against potyviruses, have been identified from wild germplasm and introduced into cultivated cultivars via hybrid breeding. However, these resistance genes mainly exhibit qualitative resistance mediated by single genes, which cannot protect against virus mutations, recombination, mixed-infection, or emerging viruses, thus posing a great challenge to tomato antiviral breeding. Based on the epidemic characteristics of tomato viruses, we propose that future studies on tomato virus resistance breeding should focus on rapidly, safely, and efficiently creating broad-spectrum germplasm materials resistant to multiple viruses. Accordingly, we summarized and analyzed the advantages and characteristics of the three tomato antiviral breeding strategies, including marker-assisted selection (MAS)-based hybrid breeding, RNA interference (RNAi)-based transgenic breeding, and CRISPR/Cas-based gene editing. Finally, we highlighted the challenges and provided suggestions for improving tomato antiviral breeding in the future using the three breeding strategies.


Assuntos
Vírus de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Resistência à Doença/genética , Melhoramento Vegetal , Antivirais , Doenças das Plantas/genética
9.
Microsyst Nanoeng ; 9: 133, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886351

RESUMO

With the growing demand for thermal management of electronic devices, cooling of high-precision instruments, and biological cryopreservation, heat flux measurement of complex surfaces and at ultralow temperatures has become highly imperative. However, current heat flux sensors (HFSs) are commonly used in high-temperature scenarios and have problems when applied in low-temperature conditions, such as low sensitivity and embrittlement. In this study, we developed a flexible and highly sensitive HFS that can operate at ultralow to high temperatures, ranging from -196 °C to 273 °C. The sensitivities of HFSs with thicknesses of 0.2 mm and 0.3 mm, which are efficiently manufactured by the screen-printing method, reach 11.21 µV/(W/m2) and 13.43 µV/(W/m2), respectively. The experimental results show that there is a less than 3% resistance change from bending to stretching. Additionally, the HFS can measure heat flux in both exothermic and absorptive cases and can measure heat flux up to 25 kW/m2. Additionally, we demonstrate the application of the HFS to the measurement of minuscule heat flux, such as heat dissipation of human skin and cold water. This technology is expected to be used in heat flux measurements at ultralow temperatures or on complex surfaces, which has great importance in the superconductor and cryobiology field.

10.
Front Genet ; 14: 1266158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886687

RESUMO

Background: Osteoarthritis (OA) is one of the most common joint diseases worldwide, imposing a substantial burden on individuals and society. Numerous pieces of evidence suggest that walking pace (WP) can serve as a predictive indicator for the risk of various diseases, and observational studies have also found a potential link between WP and the risk of OA. However, the causal relationship between WP and the risk of OA remains unclear. Methods: We conducted a mendelian randomization (MR) study using data from the European Genome-wide Association Study, which included WP (including 459,915 participants), OA (including 10,083 cases and 40,425 controls), knee OA (including 24,955 cases and 378,169 controls), and hip OA (including 15,704 cases and 378,169 controls). Single nucleotide polymorphisms (SNPs) associated with WP were utilized to infer causal associations with OA and its subtypes. The Inverse Variance Weighted (IVW) technique served as the primary causal analysis method. Three auxiliary MR methods - MR-Egger, weighted median, and maximum likelihood - were used to substantiate the IVW results. Sensitivity analyses were performed to examine heterogeneity and pleiotropy. In addition, multivariate MR (MVMR) analysis was used to assess causality after adjustment for three potential confounders. Results: According to the results of the IVW method, every 1 standard deviation increased in genetic WP corresponds to an 89% reduction in the risk of OA (odds ratio (OR) = 0.11; 95% confidence interval (CI), 0. 06-0.19; p = 1.57 × 10-13), an 83% reduction in the risk of knee OA (OR = 0.17; 95% CI, 0.11-0.28; p = 2.78 × 10-13), and a 76% reduction in the risk of hip OA (OR = 0.24; 95% CI, 0.14-0.43; p = 1.51 × 10-6). These results were confirmed by the three additional MR methods and validated by the sensitivity analysis. Ultimately, the MVMR analysis confirmed that the role of WP in reducing the risk of OA and its subtypes remains consistent regardless of potential confounders. Conclusion: The results of our MR study highlight a significant causal association between WP and the susceptibility to OA, including its knee and hip subtypes. These findings propose that WP could be utilized as a potential prognostic factor for OA risk.

11.
Heliyon ; 9(9): e20077, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809545

RESUMO

The whiteflies of Bemisia tabaci complex, composed of >44 cryptic species, are economically important pests of tomatoes for their direct feeding and virus transmission. The present study aimed to evaluate the impact of leaf trichomes on the host selection and development of whitefly; comparative invasiveness between B. tabaci Q and A cryptic species; and the ability of weeds as hosts of the population of insect whitefly. We carried out our investigation through adult host selection and oviposition in multi-choice conditions, immature development and survival, and adult survival and oviposition in no-choice conditions. We investigated leaf trichomes type and densities on the leaves of four tomato varieties and two weed species. Results showed that the leaf trichomes of tomatoes and weeds impact the host selection and immature development differently on the cryptic species B. tabaci Q and A. In the multi-choice case, B. tabaci Q adults preferred tomato varieties Ao-Ni-Er and He-Fen for both settling and oviposition whereas B. tabaci A preferred Ao-Ni-Er, He-Fen, and Billy-Goat-Weed for settling but oviposited more eggs on both weed species Billy-Goat-Weed and False-Mallow. Both B. tabaci Q and A adults refused Ye-Sheng either settling or oviposition. In the case of immature development, B. tabaci Q developed faster than B. tabaci A. Concerning plant, B. tabaci Q developed faster on Ao-Ni-Er, He-Fen and Billy-Goat-Weed but B. tabaci A on Billy-Goat-Weed, False-Mallow and Ao-Ni-Er. The immature survival of Q was higher than that of A. Immature of B. tabaci Q survived well (68.6-86.8%) on all plants except Ye-Sheng (49.3%) but B. tabaci A survived very less (0-17.6%) on any tomatoes where 70.4% on Billy-Goat-Weed and 60.5% on False-Mallow. After seven days of adult infestation, both B. tabaci Q and A died on Ye-Sheng where 52.5-78.1% survivorships were observed on other plants. In seven days, B. tabaci Q laid more eggs compared to B. tabaci A. Considering the plants, both species laid more eggs on Ao-Ni-Er, He-Fen and False-Mallow, whereas the lowest number was laid on Ye-Sheng. The highest number of glandular trichome Type IV was observed on Ye-Sheng which showed resistance against both B. tabaci Q and A cryptic species. The cryptic species B. tabaci Q showed a wider range adaptation ability on plants than that of A. Weeds can play a significant role as an infestation source of whiteflies to tomatoes and other crops. These findings suggest that glandular trichomes may be used in plant breeding programmes for the development of whitefly-resistant crop cultivars.

12.
Small ; 19(48): e2304599, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37544920

RESUMO

Considerable thermal energy is emitted into the environment from human activities and equipment operation in the course of daily production. Accordingly, the use of thermoelectric generators (TEGs) can attract wide interest, and it shows high potential in reducing energy waste and increasing energy recovery rates. Notably, TEGs have aroused rising attention and been significantly boosted over the past few years, as the energy crisis has worsened. The reason for their progress is that thermoelectric generators can be easily attached to the surface of a heat source, converting heat energy directly into electricity in a stable and continuous manner. In this review, applications in wearable devices, and everyday life are reviewed according to the type of structure of TEGs. Meanwhile, the latest progress of TEGs' hybridization with triboelectric nanogenerator (TENG), piezoelectric nanogenerator (PENG), and photovoltaic effect is introduced. Moreover, prospects and suggestions for subsequent research work are proposed. This review suggests that hybridization of energy harvesting, and flexible high-temperature thermoelectric generators are the future trends.

13.
Proc Natl Acad Sci U S A ; 120(28): e2302226120, 2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37399403

RESUMO

Plant intracellular nucleotide-binding domain, leucine-rich repeat-containing receptors (NLRs) activate a robust immune response upon detection of pathogen effectors. How NLRs induce downstream immune defense genes remains poorly understood. The Mediator complex plays a central role in transducing signals from gene-specific transcription factors to the transcription machinery for gene transcription/activation. In this study, we demonstrate that MED10b and MED7 of the Mediator complex mediate jasmonate-dependent transcription repression, and coiled-coil NLRs (CNLs) in Solanaceae modulate MED10b/MED7 to activate immunity. Using the tomato CNL Sw-5b, which confers resistance to tospovirus, as a model, we found that the CC domain of Sw-5b directly interacts with MED10b. Knockout/down of MED10b and other subunits including MED7 of the middle module of Mediator activates plant defense against tospovirus. MED10b was found to directly interact with MED7, and MED7 directly interacts with JAZ proteins, which function as transcriptional repressors of jasmonic acid (JA) signaling. MED10b-MED7-JAZ together can strongly repress the expression of JA-responsive genes. The activated Sw-5b CC interferes with the interaction between MED10b and MED7, leading to the activation of JA-dependent defense signaling against tospovirus. Furthermore, we found that CC domains of various other CNLs including helper NLR NRCs from Solanaceae modulate MED10b/MED7 to activate defense against different pathogens. Together, our findings reveal that MED10b/MED7 serve as a previously unknown repressor of jasmonate-dependent transcription repression and are modulated by diverse CNLs in Solanaceae to activate the JA-specific defense pathways.


Assuntos
Proteínas de Arabidopsis , Imunidade Vegetal , Imunidade Vegetal/genética , Ciclopentanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
14.
iScience ; 26(8): 107303, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37520735

RESUMO

Flexible thin-film thermocouples (TFTCs) have been garnering interest as temperature sensors due to the advantages of being flexible, ultrathin, and ultralight. Additionally, they have fast response times and enable detection of temperature. These properties have made them suitable for applications such as wearable electronics, healthcare, portable personal devices, and smart detection systems. This review presents the progress in the development of flexible TFTCs. The mechanism, structural design, materials, fabrication methods, and related applications of flexible TFTCs are also elaborated. Finally, future development directions of flexible TFTCs are discussed such as wide-range temperature measurement, multiple sensor integration, and achieving reliable cold-end compensation systems.

15.
Heliyon ; 9(6): e16719, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37303532

RESUMO

This study identified a novel virus in the family Partitiviridae infecting Polygonatum kingianum Coll. et Hemsl, which is tentatively named polygonatum kingianum cryptic virus 1 (PKCV1). PKCV1 genome has two RNA segments: dsRNA1 (1926 bp) has an open reading frame (ORF) encoding an RNA-dependent RNA polymerase (RdRp) of 581 amino acids (aa), and dsRNA2 (1721 bp) has an ORF encoding a capsid protein (CP) of 495 aa. The RdRp of PKCV1 shares 20.70-82.50% aa identity with known partitiviruses, and the CP of PKCV1 shares 10.70-70.80% aa identity with known partitiviruses. Moreover, PKCV1 phylogenetically clustered with unclassified members of the Partitiviridae family. Additionally, PKCV1 is common in P. kingianum planting regions and has a high infection rate in P. kingianum seeds.

16.
Hortic Res ; 10(5): uhad043, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37188058

RESUMO

Evolutionarily conserved antiviral RNA interference (RNAi) mediates a primary antiviral innate immunity preventing infection of broad-spectrum viruses in plants. However, the detailed mechanism in plants is still largely unknown, especially in important agricultural crops, including tomato. Varieties of pathogenic viruses evolve to possess viral suppressors of RNA silencing (VSRs) to suppress antiviral RNAi in the host. Due to the prevalence of VSRs, it is still unknown whether antiviral RNAi truly functions to prevent invasion by natural wild-type viruses in plants and animals. In this research, for the first time we applied CRISPR-Cas9 to generate ago2a, ago2b, or ago2ab mutants for two differentiated Solanum lycopersicum AGO2s, key effectors in antiviral RNAi. We found that AGO2a but not AGO2b was significantly induced to inhibit the propagation of not only VSR-deficient Cucumber mosaic virus (CMV) but also wild-type CMV-Fny in tomato; however, neither AGO2a nor AGO2b regulated disease induction after infection with either virus. Our findings firstly reveal a prominent role of AGO2a in antiviral RNAi innate immunity in tomato and demonstrate that antiviral RNAi evolves to defend against infection of natural wild-type CMV-Fny in tomato. However, AGO2a-mediated antiviral RNAi does not play major roles in promoting tolerance of tomato plants to CMV infection for maintaining health.

17.
J Virol ; 97(4): e0180922, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37022194

RESUMO

Orthotospoviruses, the plant-infecting bunyaviruses, cause serious diseases in agronomic crops and pose major threats to global food security. The family of Tospoviridae contains more than 30 members that are classified into two geographic groups, American-type and Euro/Asian-type orthotospovirus. However, the genetic interaction between different species and the possibility, during mixed infections, for transcomplementation of gene functions by orthotospoviruses from different geographic groups remains underexplored. In this study, minireplicon-based reverse genetics (RG) systems have been established for Impatiens necrotic spot virus (INSV) (an American-type orthotospovirus) and for Calla lily chlorotic spot virus and Tomato zonate spot virus (CCSV and TZSV) (two representative Euro/Asian orthotospoviruses). Together with the earlier established RG system for Tomato spotted wilt virus (TSWV), a type species of the Orthotospovirus American-clade, viral replicase/movement proteins were exchanged and analyzed on interspecies transcomplementation. Whereas the homologous RNA-dependent RNA polymerase (RdRp) and nucleocapsid (N) protein supported the replication of orthotospoviruses from both geographic groups, heterologous combinations of RdRp from one group and N from the other group were unable to support the replication of viruses from both groups. Furthermore, the NSm movement protein (MP), from both geographic groups of orthotospoviruses, was able to transcomplement heterologous orthotospoviruses or a positive-strand Cucumber mosaic virus (CMV) in their movement, albeit with varying efficiency. MP from Rice stripe tenuivirus (RSV), a plant-infecting bunyavirus that is distinct from orthotospoviruses, or MP from CMV also moves orthotospoviruses. Our findings gain insights into the genetic interaction/reassortant potentials for the segmented plant orthotospoviruses. IMPORTANCE Orthotospoviruses are agriculturally important negative-strand RNA viruses and cause severe yield-losses on many crops worldwide. Whereas the emergence of new animal-infecting bunyaviruses is frequently associated with genetic reassortants, this issue remains underexposed with the plant-infecting orthotospovirus. With the development of reverse genetics systems for orthotospoviruses from different geographic regions, the interspecies/intergroup replication/movement complementation between American- and Euro/Asian-type orthotospoviruses were investigated. Genomic RNAs from American orthotospoviruses can be replicated by the RdRp and N from those of Euro/Asia-group orthotospoviruses, and vice versa. However, their genomic RNAs cannot be replicated by a heterologous combination of RdRp from one geographic group and N from another geographic group. Cell-to-cell movement of viral entity is supported by NSm from both geographic groups, with highest efficiency by NSm from viruses belonging to the same group. Our findings provide important insights into the genetic interaction and exchange ability of viral gene functions between different species of orthotospovirus.


Assuntos
Genética Reversa , Tospovirus , Replicação Viral , Animais , Genética Reversa/métodos , RNA Polimerase Dependente de RNA , Tospovirus/genética , Estados Unidos , Replicação Viral/genética , RNA Viral/genética , Proteínas do Nucleocapsídeo/genética
18.
Nat Commun ; 14(1): 1827, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005419

RESUMO

Several groups of bacteria have complex life cycles involving cellular differentiation and multicellular structures. For example, actinobacteria of the genus Streptomyces form multicellular vegetative hyphae, aerial hyphae, and spores. However, similar life cycles have not yet been described for archaea. Here, we show that several haloarchaea of the family Halobacteriaceae display a life cycle resembling that of Streptomyces bacteria. Strain YIM 93972 (isolated from a salt marsh) undergoes cellular differentiation into mycelia and spores. Other closely related strains are also able to form mycelia, and comparative genomic analyses point to gene signatures (apparent gain or loss of certain genes) that are shared by members of this clade within the Halobacteriaceae. Genomic, transcriptomic and proteomic analyses of non-differentiating mutants suggest that a Cdc48-family ATPase might be involved in cellular differentiation in strain YIM 93972. Additionally, a gene encoding a putative oligopeptide transporter from YIM 93972 can restore the ability to form hyphae in a Streptomyces coelicolor mutant that carries a deletion in a homologous gene cluster (bldKA-bldKE), suggesting functional equivalence. We propose strain YIM 93972 as representative of a new species in a new genus within the family Halobacteriaceae, for which the name Actinoarchaeum halophilum gen. nov., sp. nov. is herewith proposed. Our demonstration of a complex life cycle in a group of haloarchaea adds a new dimension to our understanding of the biological diversity and environmental adaptation of archaea.


Assuntos
Halobacteriaceae , Streptomyces , Hifas/genética , Proteômica , Filogenia , RNA Ribossômico 16S/genética , Streptomyces/genética , Halobacteriaceae/genética , Esporos , Diferenciação Celular , Análise de Sequência de DNA , China
19.
Plant J ; 115(1): 155-174, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37025008

RESUMO

Salicylic acid (SA) plays important roles in different aspects of plant development, including root growth, where auxin is also a major player by means of its asymmetric distribution. However, the mechanism underlying the effect of SA on the development of rice roots remains poorly understood. Here, we show that SA inhibits rice root growth by interfering with auxin transport associated with the OsPIN3t- and clathrin-mediated gene regulatory network (GRN). SA inhibits root growth as well as Brefeldin A-sensitive trafficking through a non-canonical SA signaling mechanism. Transcriptome analysis of rice seedlings treated with SA revealed that the OsPIN3t auxin transporter is at the center of a GRN involving the coat protein clathrin. The root growth and endocytic trafficking in both the pin3t and clathrin heavy chain mutants were SA insensitivity. SA inhibitory effect on the endocytosis of OsPIN3t was dependent on clathrin; however, the root growth and endocytic trafficking mediated by tyrphostin A23 (TyrA23) were independent of the pin3t mutant under SA treatment. These data reveal that SA affects rice root growth through the convergence of transcriptional and non-SA signaling mechanisms involving OsPIN3t-mediated auxin transport and clathrin-mediated trafficking as key components.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Clatrina/metabolismo , Proteínas de Arabidopsis/metabolismo , Oryza/metabolismo , Arabidopsis/genética , Ácido Salicílico/metabolismo , Raízes de Plantas/metabolismo , Transporte Proteico , Ácidos Indolacéticos/metabolismo
20.
PLoS Pathog ; 19(3): e1011238, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36961862

RESUMO

A major threat to rice production is the disease epidemics caused by insect-borne viruses that emerge and re-emerge with undefined origins. It is well known that some human viruses have zoonotic origins from wild animals. However, it remains unknown whether native plants host uncharacterized endemic viruses with spillover potential to rice (Oryza sativa) as emerging pathogens. Here, we discovered rice tiller inhibition virus (RTIV), a novel RNA virus species, from colonies of Asian wild rice (O. rufipogon) in a genetic reserve by metagenomic sequencing. We identified the specific aphid vector that is able to transmit RTIV and found that RTIV would cause low-tillering disease in rice cultivar after transmission. We further demonstrated that an infectious molecular clone of RTIV initiated systemic infection and causes low-tillering disease in an elite rice variety after Agrobacterium-mediated inoculation or stable plant transformation, and RTIV can also be transmitted from transgenic rice plant through its aphid vector to cause disease. Finally, global transcriptome analysis indicated that RTIV may disturb defense and tillering pathway to cause low tillering disease in rice cultivar. Thus, our results show that new rice viral pathogens can emerge from native habitats, and RTIV, a rare aphid-transmitted rice viral pathogen from native wild rice, can threaten the production of rice cultivar after spillover.


Assuntos
Afídeos , Oryza , Vírus , Animais , Humanos , Oryza/genética , Afídeos/genética , Perfilação da Expressão Gênica , Plantas Geneticamente Modificadas/genética , Vírus/genética , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...